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Fixed points in a Hopfield model with random asymmetric interactions
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We calculate analytically the average number of fixed points in the Hopfield model of associative
memory when a random antisymmetric part is added to the otherwise symmetric synaptic matrix. Addi-
tion of the antisymmetric part causes an exponential decrease in the total number of fixed points. If the
relative strength of the antisymmetric component is small, then its presence does not cause any substan-
tial degradation of the quality of retrieval when the memory loading level is low. We also present results
of numerical simulations which provide qualitative (as well as quantitative for some aspects)
confirmation of the predictions of the analytic study. Our numerical results suggest that the analytic cal-
culation of the average number of fixed points yields the correct value for the typical number of fixed

points.

PACS number(s): 87.10.+e, 64.60.Cn, 75.50.Lk, 05.50.+q

I. INTRODUCTION

In the Hopfield model [1,2] of associative memory, a
chosen set of random binary patterns (‘“memories™) are
stored by using the modified Hebb rule which leads to a
symmetric synaptic connection matrix. The symmetry of
the synaptic connection matrix has been crucial in the
analysis of the behavior of this model by using the tech-
niques of equilibrium statistical mechanics [3,4]. There
are, however, many reasons for considering the behavior
of Hopfield-like models in which the synaptic matrix is
not symmetric. The constraint of symmetry on the
synaptic matrix is known to be biologically unrealistic.
The synaptic connection between two neurons in biologi-
cal networks is often found [5] to be only one-way. It is
also believed [5] that biological neural networks generally
obey Dale’s law according to which a neuron can have
only one kind of outgoing synapses, either excitatory or
inhibitory. Clearly, a network obeying this law cannot
have a symmetric synaptic connection matrix—neurons
must receive synaptic inputs of both positive and negative
sign and send output of single sign.

There are reasons to believe that the presence of asym-
metry in the synaptic matrix may improve the perfor-
mance of the network as an associative memory. It is
well known [4] that the Hopfield model possesses a large
number of spurious fixed-point attractors which are local-
ly stable under the usual single spin-flip dynamics.
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Gardner [6] has shown that in the limit of large number
of neurons, the spurious fixed points form a much
broader band compared to the narrow band of retrieval
fixed points found below the critical level of memory
loading. The band of spurious attractors is centered
around those with no macroscopic overlap with any
stored pattern and extends up to attractors having finite
correlations with one or more memory states. The pres-
ence of these spurious attractors adversely affects the per-
formance of the network as an associative memory. Ini-
tial states which are not very close to stored memories
are “‘captured” by one of these spurious attractors, there-
by reducing the basins of attraction of the stored memory
states. In order to alleviate this problem, one may use
stochastic dynamics [4] which corresponds to a finite
temperature. As the temperature is increased, more and
more spurious attractors are destabilized [3,4]. However,
the retrieval quality also decreases monotonically with in-
crease in temperature. An alternative, which has been
proposed by many researchers following an early sugges-
tion of Hopfield [1], involves the use of asymmetry in the
synaptic connections. Hertz, Grinstein, and Solla [7]
studied the dynamics of an analog version of a Hopfield
network with random asymmetry. On the basis of an an-
alytic calculation which is strictly valid in the #» — o lim-
it of an n-compound spin model, they argued that the
presence of any amount of asymmetry in the synaptic
connections destabilizes all “spin-glass-like” spurious at-
tractors. Similar conclusions have been obtained by
Crisanti and Sompolinsky [8] from an approximate ana-
lytic treatment (using the spherical approximation) of a
Hopfield model in which a random antisymmetric part is
added to the symmetric Hebbian synaptic matrix. On the
other hand, these and other [9-11] studies show that re-
trieval states, which are highly correlated with the stored
memories, remain stable in the presence of moderate
amounts of asymmetry. Similar conclusions about a de-
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struction of the spin-glass state in asymmetric versions of
the Sherrington-Kirkpatrick model [14] of Ising spin
glass have been obtained by several authors [12,13] from
approximate analytic treatments and numerical simula-
tions. These results suggest that the presence of asym-
metry in the synaptic connections may improve the re-
trieval performance of Hopfield-like models of associative
memory by eliminating some of the spurious attractors.

Parisi [15] has proposed another positive role of asym-
metry in the context of neural network modeling. In the
Hopfield model, it is impossible for the network to
discriminate between the two cases (a) retrieval of one of
the stored patterns and (b) “confusion” as represented by
convergence to a spurious fixed-point attractor, because
in both cases the network settles down in a time-
independent state. Parisi argues that asymmetry may be
functional in converting spin-glass-like fixed points into
chaotic trajectories. It would then be possible to discrim-
inate between the two cases through the temporal
behavior of the network. Such discrimination would be
necessary for the prevention of Hebbian learning of spuri-
ous patterns.

In this paper, we consider a Hopfield model with a ran-
dom antisymmetric part added to the otherwise sym-
metric synaptic connection matrix. This model may have
some biological relevance in the tabula non rasa scenario
proposed by Toulouse, Dehaene, and Changeux [16] ac-
cording to which memories are iteratively added by a
Hebbian learning process in a network which starts out
with random asymmetric synaptic connections. The re-
sulting synaptic matrix would have a symmetric Hebbian
component and a random asymmetric one which may be
divided into a symmetric and an antisymmetric part. It is
well known [17] that the addition of a random symmetric
part to the usual Hebbian synaptic matrix does not pro-
duce any qualitative change in the behavior of the net-
work. One may then ignore the symmetric part of the
random component and consider the effects of the ran-
dom antisymmetric part on the performance of the net-
work. The model we consider is essentially the same as
one of the models studied in Ref. [8] by approximate ana-
lytic methods.

Analytic studies of the behavior of networks with
asymmetric connections are difficult because methods of
equilibrium statistical mechanics cannot be used in such
studies. As a first step towards the development of an un-
derstanding of the behavior of such networks, we have
carried out an analytic calculation of the average number
of locally stable fixed points (i.e., states which are stable
to all single spin flips) of the model described above. This
calculation uses a method which was originally developed
[18-21] for counting the number of metastable states in
the Sherrington-Kirkpatrick model of Ising spin glass.
This method was later extended to calculations of the
average number of metastable states of the Hopfield mod-
el [6], the Sherrington-Kirkpatrick model with random
asymmetry [12,13], and an asymmetrically diluted ver-
sion of the Hopfield model [22]. The main results ob-
tained from our study are summarized below. We find
that the addition of the antisymmetric part to the synap-
tic matrix leads to a computational advantage over the
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original Hopfield model in that the asymmetric network
has exponentially fewer spurious fixed points. In particu-
lar, we show that the expected number of fixed points in
the asymmetric neural network behaves as e V*(@*) where
N is the number of neurons, « is the memory loading lev-
el (defined as a=p /N, where p is the number of random
uncorrelated memories), and the asymmetry parameter k
measures the strength of the antisymmetric component of
the synaptic matrix relative to the symmetric one. For a
given value of a, F(a,k) decreases monotonically with k,
going to zero at a “critical” value k,(a) which increases
with a. A calculation of the dependence of the average
number of fixed points on the fractional Hamming dis-
tance measured from a particular memory state shows, in
accordance with previous results [6,22], that the fixed
points form two distinct “bands” for small values of k: a
narrow “retrieval” band of fixed points which are strong-
ly correlated with a memory state, and a wide “spurious”
band which is centered around states having no macro-
scopic overlap with the chosen memory state. As the
value of k is increased from zero, the height of the re-
trieval band increases initially, indicating that the intro-
duction of a small amount of asymmetry actually leads to
an exponential increase in the number of fixed points
correlated with a stored memory. Further increase in the
asymmetry parameter leads to a disappearance of the re-
trieval band. This happens in two different ways, depend-
ing on the value of a. For values of a smaller than
a,=~0.0776, the value of F at the peak of the retrieval
band decreases after an initial increase as k is increased
from zero, and crosses zero at a second “critical’’ value,
ky(a)<ki(a). Thus, for a<a, and k > k,(a), retrieval
fixed points do not exist in the thermodynamic limit. The
value of k,(a) increases with a. For a> a,, the value of
F at the peak of the retrieval band remains positive and
the disappearance of the retrieval band occurs through its
merger with the spurious one at k =kj(a), which de-
creases with increasing a. In all cases, the center of the
retrieval band shifts towards higher values of the frac-
tional Hamming distance as k is increased from zero, in-
dicating that the quality of retrieval deteriorates under
the introduction of asymmetry. For small values of a,
the deterioration in the quality of retrieval is minimal for
moderate values of k. The degradation of the quality of
retrieval increases with a for a fixed value of k, and be-
comes substantial as a approaches the saturation value
for the symmetric network, a,~0.14. We also find that
most of the fixed points which are destabilized by the in-
troduction of asymmetry have relatively high values of an
“energy”’ function which may be defined in the usual way
[4] for the symmetric part of the interaction matrix.

We have also carried out numerical simulations of the
number and properties of the fixed points of this model.
Since the number of fixed points increases exponentially
with the number of neurons () present in the network, a
complete enumeration of all the fixed points can be car-
ried out only for small values of N. For this reason, the
simulations described here are limited to networks with
N <80. Despite the small size of the simulated networks,
we find good qualitative agreement between the numeri-
cal results and the predictions of the analytic calculation.
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For some of the quantities of interest [e.g., the quantity
F(a,k) defined above], it is possible to extrapolate the re-
sults obtained for several small values of N to the N — o0
limit. The results obtained from such extrapolations are
found to be in quantitative agreement with those ob-
tained from the analytic calculation.

The remaining part of this paper is organized as fol-
lows. Section II begins with a description of the model
we consider and contains an account of our analytic cal-
culations on the number of fixed points of this model.
The results obtained from these calculations are de-
scribed in detail in this section. In Sec. III, the results of
our numerical simulations are described in detail and
compared with the predictions of the analytic calcula-
tions. Section IV contains a summary of the main results
obtained from this study, a comparison of these results
with existing ones obtained for similar models, and a dis-
cussion of the implications of these results for the re-
trieval properties of asymmetric neutral network models
of associative memory. Technical details of the analytic
calculation are presented in the Appendix.

II. ANALYTIC CALCULATION OF THE NUMBER
OF FIXED POINTS

We consider a network of N two-state neurons. The
state of the ith neuron at discrete time ¢ is described by
o;(t), where o, is an Ising variable (o;==*1). We choose
a synaptic connection matrix J;; of the following form:

Ty =J5 kI, (1)

where J® is an antisymmetric matrix with independent
Gaussian elements, i.e.,

_ VN 2 .
P(J,-"}S)——‘/?ﬂexp[—N(Jf}s) /2], i<j, ()
and J*= —J*. The symmetric part is given by the usual

Hebb rule [1]:
1 2 .
Ty= S el i#), J5=0, @)
p=1

where the {&%},i=1,...,N;u=1,...,p are the pat-
terns (memories) stored in the network. Each &% is an in-
dependent random variable which takes the values *1
with equal probability. The memory loading level
a=p /N is the ratio of the number of stored patterns to
the number of neurons.

The network evolves according to the iterated map

N

i=1

o;(t+1)=sgn , 4)

with either parallel or sequential updating. Fixed points
of this dynamics correspond to the configurations {o;}
which satisfy

N

2Jijo;
j=1

o;=sgn , i=1,...,N . (5)

Equation (5) can be written as
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rM=0,30,0, A>0, i=1,...,N, (6)
j

so that the average number of fixed points is given by

w N
(Njp(Na, )= [ " T1dATr,
i=1

>. 7)

In Eq. (7), the brackets { ) denote an average over the Np
random variables {£#} and N(N —1)/2 random variables
{J7%,i<j}. We note that In(N,) (rather than Ny, itself)
is an extensive quantity. Therefore, we should, in princi-
ple [23], calculate the disorder average of In(N, ), rather
than that of Nj. A calculation of (InN fp(N,a,k)>
would involve the use of the replica method [20,21],
which would introduce many complications. For this
reason, we instead calculate (N, (N,a,k)) which gives
an upper bound for the expected number of fixed points
[6]. Previous studies on similar models [13,20,21] suggest
that the quantity N, is self-averaging in the thermo-
dynamic limit, so that the two averages are expected to
be essentially the same. This point is discussed in more
detail in Sec. IV below.

Using a straightforward generalization of the method
of Ref. [6], we find (see the Appendix for details) that in
the N— oo limit, the average number of fixed points is
given by

(pr(N,a,k)>zeNF‘a’k) , (8)

x (115

Xi—aiEJijaj
J

where F(a,k) is given by the saddle point (over the three
parameters a, b, and x) of the following function:

1, (1—-b)? | 1
= -1 2 2t 1
F(a,k,a,b,x) ix“+a|b 2+____2a +21na
+1n2¢(¢) , ©)
where
ab —ikx
t= (10)
Vaa+k?
and
_re dA _x2p
= Vo . 11
é(2) f' S (1D

The saddle-point conditions yield the following equa-
tions:

oF ik '(t)

BF ik ¢ _, 12
o Vaat i 60) (12
oF 1—b 1 o'(t) _

—_—=1— + —— =0, 13
ab a T Vearr o) (13
OF _ 1 (1—b)? t &'(2)

oF 11— - =0. (14
da a a (aa+k?) &(t) (14

In these equations, ¢’ represents a derivative of ¢ with
respect to its argument. Using Eqgs. (12) and (13), we ob-
tain
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ik [l_ﬂ_—@l] . s
a

With this value for the parameter x, Eqs. (13) and (14)
can be solved numerically for the parameters a and b to
obtain F(a,k). We recover existing results on related
models in several special limits of the variables k£ and a.
For k =0 (no asymmetry), our results for F(a,k) reduce
to those obtained by Gardner [6] for the original Hopfield
model. In the limit a— o, k— «, k' =k /V a finite, we
recover the results obtained previously [12,13] for an
asymmetric version of the infinite-range Ising spin glass,
with k’ playing the role of the asymmetry parameter k of
Ref. [12,13]. This is as would be expected because in the
a— oo limit, the correlations among the elements of the
matrix J° may be neglected, and the Hopfield model be-
comes essentially identical to the Sherrington-
Kirkpatrick model of infinite-range Ising spin glass. Fi-
nally, in the limit ¢— o, k =0, our result for F reduces
to that obtained by Tanaka and Edwards [19] for the
infinite-range Ising spin glass.

Figure 1 shows F(a,k) as a function of the asymmetry
parameter k for three values (0.01, 0.05, and 0.1) of the
memory loading level a. As k is increased F(a,k) de-
creases monotonically. Beyond a critical value k(a) of
the asymmetry parameter, F becomes negative. Since e™F
goes to zero in the large-N limit if F is negative, there are
no fixed points for values of k higher than k (a). The
value of the critical asymmetry parameter k(a) in-
creases with a (see Fig. 5). The calculated values of k,
are higher than V'a, the value expected [12,13] in the
a— oo limit. This result shows that the presence of
correlations among the elements of the matrix J® in-
creases the value of k at which all the fixed points are
suppressed.

The concept of an “energy function” [4] plays an im-

J

(pr(N,a,k,e))=Tr{gi;<fo IiId}\"'HS [Ai_ainijaj
i J

Proceeding in the same way as above, we obtain, in the
thermodynamic limit,

<pr(N,a,k,e)>zeNF(ayk'e) , (18)
where
£ 2V
Flake)=————=2%
2 ‘/k2+a_26\/a
_ k2€2\/a
(Va—2¢e)k*+a—2evVa)
a 2e ' 2¢

(19)

and t is given by the saddle-point equation
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FIG. 1. Analytic results for the variation of F(a,k) with the
asymmetry parameter k for three different values of the memory
loading parameter a: a=0.1 (top curve), a=0.05 (middle
curve), and a=0.01 (bottom curve). Our numerical results for
F(a,k), obtained for a=0. 1, are also shown (open circles).

portant role in the theory of neural networks with sym-
metric interactions. Although such a function does not
exist for asymmetric networks, one may still define an en-
ergylike function in terms of the symmetric part of the
synaptic matrix alone. As discussed below, this function
is useful in the development of physical insight into the
behavior of the network in the presence of asymmetry.
We define the energy function as

E=—1 3 Ji0,0;=NVae. (16)
i, jli7 )
The average number of fixed points with energy parame-
ter €, (pr(N,a,k,e) ), is given by

s

NVae+t 3 Jjo,0; ) a7
i,j(i#j)
[
2eVa #'(t)
= =0. (20)
Vi +a—2eVa  $1)

Figure 2 shows the variation F(a,k,e) with € at
different values of the asymmetry parameter k for
a=0.1. It is clear that the introduction of asymmetry
causes a pronounced reduction in the number of fixed
points with high values of €. Consequently, the peak of
the energy distribution shifts towards lower energy as the
value of k is increased. This trend can be understood
qualitatively if we consider the role of the energy param-
eter in the stability of a fixed point. For k=0, a
configuration {o;} is stable against all single spin flips if

AM=0,3J50;>0, i=1,...,N . 1)
j

It follows from Eq. (16) that
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-0.5

FIG. 2. Analytic results for the variation of F(a,k,€) with
the energy parameter € for a=0.1 and three different values of
the asymmetry parameter k: k =0 (top curve), k =0.2 (middle
curve), and k =0.4 (bottom curve).

—13N . (22)

Thus, a fixed point of the symmetric model with low
(high) energy has, on the average, large (small) values of
the “stability parameters” {A;}. Therefore, fixed points
with relatively high energy are more likely to be destabi-
lized by the introduction of the random asymmetric com-
ponent of the interaction. This is precisely the trend we
find (see Fig. 2). In the special case, kK =0 and a— o, we
recover, as expected, the results obtained previously
[20,21] for the Sherrington-Kirkpatrick model of Ising
spin glass.

To study the behavior of fixed points correlated with a
stored pattern in the presence of asymmetry, we general-
ize the calculation of Gardner [6] on the number of fixed
points at Hamming distance Ng from a stored pattern.
We consider a configuration {o;} which is at a Hamming
distance Ng from the vth stored pattern {£}}. This
configuration will be a fixed point of the network dynam-
ics if the following conditions are satisfied:

=0 3050, ko k>0 i<l ,N. @3

Thus, the average number of fixed points at a Hamming
distance Ng from the vth stored pattern is given by

(pr(N,a,k,g))=waHdAiTr{oi]<H8(ki-—R,-")> .

(24)

Separation of the term coming from the vth pattern and
the interference term coming from the other patterns
gives

RY=1—2g+

% S S é&tioo (25a)

JFEi uFEv

+k2Jasa o
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for N (1—g) values of i for which £/=0;, and
=2g —1+ ——2 > Eloo; +k21”a o, (25b)
Nﬁ&l puFv

otherwise. Manipulating Eq. (24) in a manner similar to
that used in the calculation of (N, (N,a,k)) we get

(pr(N,a,k,g))zeNF(a,k,g) . o6

F(a,k,g) is obtained as the saddle point (over the three
parameters x, a, and b) of the function

x? 1, (1=b)? 1
=——+4 [—— _— —
F(a,k,g,x,a,b) 2 al|b 2+ 2a +2lna
+(1—g)lng(t)+g Ind(u)
—glng —(1—g)n(1—g), 27
where
2g —1+ba—ikx
t= I (28a)
Vki+taa
1—2g +ab —ikx
= (28b)
Vk2+aa
It can be checked explicitly that F(a,k)

=F(a,k,g =0.5). This implies that in the thermo-
dynamic limit, the total number of fixed points of the net-
work is dominated by the fixed points uncorrelated with
the chosen memory.

For k =0, we recover, as expected, the results of Ref.
[6]. In particular, we find that there is a narrow band of
fixed points corresponding to the retrieval states. The
peak of this band is at a finite Hamming fraction g,
which implies that the recall of memory is always accom-
panied by some error, as a consequence of the extensive
loading of the memory. The retrieval band is followed by
a gap and thereafter by a broad band of fixed points cor-
responding to the spurious states. This band is centered
around g =0.5 (i.e., states uncorrelated with the memory)
and extends up to states having macroscopic correlations
with the memory. As k is increased from zero, we find
the following behavior in addition to the aforementioned
reduction of the total number of fixed points.

(1) The height and the width of the retrieval band in-
creases, signaling an exponential increase in the number
of retrieval states.

(2) The peak of the retrieval band shifts towards higher
values of the Hamming fraction, i.e., the value of g, in-
creases with k.

While (1) is beneficial from the point of view of associa-
tive recall, (2) adversely affects the retrieval quality of the
network. The result that increasing k leads to increased
error in retrieval may be understood qualitatively if we
consider the source of retrieval error in the symmetric
network itself [3,4]. From Eq. (6), the condition that the
ith bit of the vth pattern is correctly retrieved in the sym-
metric network when all the other neurons are fixed in
the states corresponding to the vth pattern (o;=§7 for
i#j)is
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N—1 1
+—= EVEREYEN >0 . (29)
N Njél yév =

In the limit of large N, the first term on the left-hand side
of Eq. (29) tends to unity. The second term involves a
sum of (N —1)(p —1)= Np random terms, each of which
takes the values +1 and —1 with equal probability.
Neglecting correlations among these terms, the sum may
be approximated by a Gaussian random variable with
zero mean and variance o’>=a. Hence, the probability
that the ith bit is retrieved correctly is given by

x2
202
1/2
] . 50

From this equation, it is clear that a finite amount of re-
trieval error is present for any nonzero value of a. For
the asymmetric case, Eq. (29) has an additional term,
k3 i+l 6167, on its left-hand side. Consequently, o in
Eq. (30) is given by

ol=a+k?. (31)

Thus, the introduction of asymmetry increases the
strength of the “noise” term, leading to increased error in
the retrieval of a memory. The increase in the peak
height of the retrieval band is due to the increase in the
phase space factor associated with the increased error in
the retrieval.

Our results for F(a,k,g) for two different values of the
memory loading level, a=0.05 and 0.1, and several
values of the asymmetry parameter k are shown in Figs. 3
and 4. Since F is invariant under g —1—g, its value for
g =0.5 only are shown in these figures. For relatively
small values of a (see Fig. 3), the retrieval band is very
well separated from the spurious band. The value of F at

1 o
P~ ——— dx ex
V' 2ro? f—l P

1+erf

202

— k=0.0 =
-~ k=0.1 ﬁ
s | T k=025
— k=03

i
l
1
l
|
|
I
|
l
|
I
/

10°® 10 10 102 107

FIG. 3. Analytic results for the dependence of F(a,k,g) on
the Hamming fraction g, for «=0.05 and four different values
(0, 0.1, 0.225, and 0.3) of the asymmetry parameter k. The peak
of the retrieval band crosses zero near k =0.225.
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FIG. 4. Analytic results for the dependence of F(«a,k,g) on
the Hamming fraction g, for a=0.1 and four different values (0,
0.1, 0.146, and 0.166) of the asymmetry parameter k. The re-
trieval band merges with the spurious band near k =0.146 and
the low-g peak of F disappears near k =0.166.

the peak of the retrieval band increases initially as k is in-
creased from zero, but subsequently begins to decrease as
k is increased further. Eventually, it crosses zero at a
“critical” value, k,(a), of k, which increases with a.
Thus, retrieval fixed points do not exist in the thermo-
dynamic limit if k >k,(a). The peak of the retrieval
band for k < k,(a) occurs at a small value of g, indicating
that the quality of retrieval is not seriously affected by the
introduction of asymmetry if the value of « is small. The
qualitative behavior of F(a,k,g) as a function of k
changes as the value of «a is increased from a,~=0.0776.
For such values of «a, the disappearance of the retrieval
band occurs through its merger with the spurious band
(i.e., a vanishing of the gap between the two bands). This

05 ( ——

0.4

0.1 N

0 0.05 0.1
o
FIG. 5. Analytic results for the three “critical” values of the
asymmetry parameter k. The upper curve shows the variation
of k, with a. The lower curve shows the a dependence of k, for
a <ay=~0.0776 and that of k; for a > a;=~0.0776.
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is illustrated in Fig. 4. The gap between the two bands
goes to zero at k =kj(a), which decreases as « is in-
creased and goes to zero at a=0.11, in agreement with
the result derived in Ref. [6]. The variations of the “criti-
cal” values, k; (the value of k at which all fixed points
disappear), k, (for a <ay), and k; (for a > a,) with a are
shown in Fig. 5. A comparison of the results shown in
Figs. 3 and 4 shows that the degradation in the quality of
retrieval for a fixed value of k increases as a is increased.
This result and the observation that the suppression of
the retrieval band occurs at relatively high values of k for
small values of a suggest that the introduction of asym-
metry will have a beneficial effect on the performance of
the network only if the value of a is small
(a=ay=0.0776).

III. SIMULATIONS

We have carried out a number of numerical simula-
tions to test predictions of the analytic calculations de-
scribed in the preceding section. Since the total number
of fixed points increases exponentially with N, an exhaus-
tive enumeration of all the fixed points is numerically
feasible only if the value of N is small. For this reason,
the simulations described in this paper were restricted to
networks of rather small sizes, N =40, 60, and 80. These
values of NV are in the same range as the sample sizes con-
sidered in all existing numerical studies [13,25,26] of the
number and properties of fixed points of similar models.
For asymmetric networks, four different values 0.1, 0.2,
0.3, 0.4, of the asymmetry parameter k were considered
and simulations for each realization of the symmetric
component of the synaptic matrix were carried out for
two different sets of antisymmetric interconnections. For
N =80, only the asymmetric network was studied. The
memory loading level a of the networks was fixed at 0.1.
Random sequential updating was used in all these simula-
tions. The number of realizations used for N =40, 60,
and 80 was 100, 20, and 10, respectively.

We first describe the procedure used in the enumera-
tion of all the fixed points of a network. For each realiza-
tion of the synaptic interaction matrix, we started with a
large number of randomly chosen initial configurations of
the variables {o;} and allowed the network to evolve un-
til it reached a fixed point or a preset time limit (see
below) was exceeded. A fixed point is referred to as
“paired” if both the fixed point and its complement (ob-
tained by reversing the signs of all the o,’s) have been
found in the search. Otherwise, it is called “unpaired.”
In the simulation we found that N up? the number of “‘un-
paired” fixed points, increases with the increase of the to-
tal number of found fixed points at the beginning of the
search procedure. Then, as the search proceeds further,
N, fluctuates around a characteristic value as new fixed
points as well as the complements of already found fixed
points are encountered in the search. Eventually, N, de-
creases towards zero. After it reaches zero, no new fixed
point is found even if the search is continued further for a
very large number of random inputs (e.g., 10 times the
number of inputs used before N, reaches zero). There-
fore, the vanishing of N, may reasonably be taken to be
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an indication that almost all the fixed points have already
been found in the search. Another indicator that may be
used is the frequency of finding “new” fixed points. At
the beginning of the search, almost every fixed point
found is a new one. As the search proceeds, the frequen-
cy of appearance of new fixed points gradually decreases
and finally approaches zero. In this situation also, we
may assume that almost all the fixed points have been
found. In our simulation, both these indicators were
used. If all of the existing fixed points are paired, and no
new fixed point is encountered for a sufficiently large
number of subsequent inputs (e.g., 6000 for N =60 and
k =0), the search is terminated and the total number of
fixed points is taken to be two times the number of paired
ones. If the number of unpaired fixed points becomes
very small but does not reach zero, and no new fixed
point appears for a much larger number of inputs (e.g.,
60000 inputs for N =60 and k =0), then the search is
terminated and the total number of fixed points is taken
to be two times the sum of the numbers of both “paired”
and ‘“‘unpaired” ones. In our simulations, the total num-
ber of inputs used to find all the fixed points of a network
ranges from 2000 to more than 5000000. With the in-
crease of N and decrease of k, the number of inputs need-
ed for searching out all the fixed points increases rapidly.
For N =40 and k =0.4, the average number of inputs is
2631. It reaches the value 2480000 for N =60 and
k =0, and 2 570000 for N =80 and k =0.1. The largest
number of input for one set of couplings is 5356 625, ob-
tained in the case N =60 and k =0. The average number
of fixed points found in our simulations ranges from 7 to
302, the smallest number being obtained for N =40 and
k =0.4, and the largest one for N =60 and k =0. The
largest number of fixed points found in our simulations
for a particular network is 774, obtained in a network
with N =60 and k =0. For every fixed point, its energy
[as defined in Eq. (16)], its Hamming distance from each
memory state of the network, and the number of random
inputs which converged to the fixed point were recorded.

Limit cycles and chaotic trajectories are known [12,27]
to occur in the dynamics of networks with asymmetric
connections. To identify such trajectories, the average
time needed to reach a fixed point from a randomly
chosen initial configuration was first estimated from
simulations on several samples. Then, a time limit was
set at a value greater than ten times this average. If a
given input did not reach a fixed point within this time
limit, it was considered to have been trapped into a limit
cycle or a chaotic trajectory.

Two methods of averaging were used in the calculation
of F(a,k). In the first method, InN +p Was calculated for
each realization of the network, and its mean and vari-
ance over all the realizations were evaluated. Then,
F(a,k) was determined by fitting the results obtained for
different values of N to the linear equation

(InN;, ) =NF(a,k)+C, 32)

where C is a constant. In the second method, the average
of N, over all sets of couplings was calculated at first,
and F(a,k) was determined from a weighted least-
squares fit to the linear equation
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FIG. 6. Numerical results for the dependence of Ny,, the
average number of fixed points, on the energy parameter ¢, for
networks with N =60, a=0. 1, and three different values (0, 0.2,
and 0.4) of the asymmetry parameter k.

In(N,,)=NF(a,k)+C . (33)

We found that the results obtained by the two methods
are essentially identical within error bars. This observa-
tion strongly suggests that the quantity N, is self-
averaging. The numerical results for F(a,k) for a=0.1,
and a comparison with the analytic ones are shown in
Fig. 1. The results of the simulation are found to be in
good agreement with those obtained from the analytic
study.

Simulation results for the dependence of the number of
fixed points on the energy parameter € and the Hamming
fraction g are shown in Figs. 6 and 7, respectively. These

20 —
— k=0.0
--- k=0.1
- - k=0.2
15F

FIG. 7. Numerical results for the dependence of Nj,, the
average number of fixed points, on the fractional Hamming dis-
tance g measured from a particular memory. The results shown
are for networks with N =60, a=0.1, and four different values
(0, 0.1, 0.2, and 0.3) of the asymmetry parameter k.
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data were all obtained from simulations of networks with
N =60. To obtain the data shown in Fig. 6, the entire
range of possible energy values was divided into a num-
ber of intervals (“bins”) of equal width. For each cou-
pling matrix, the number of stable states whose energies
fall into the different bins were counted. The numbers
obtained in this way for all the bins were then averaged
over all realizations of the coupling matrix. A compar-
ison of Fig. 6 with Fig. 2 shows that all the qualitative
features predicted by the analytic calculation (e.g., selec-
tive elimination of fixed points with high energy by the
introduction of asymmetry and a shift of the peak of the
energy distribution to lower values of the energy as the
asymmetry parameter k is increased) are reproduced in
the numerical results.

Figure 7 shows the average number of fixed points as a
function of g, the fractional Hamming distance measured
from a specific memory state. The data shown in this
figure were obtained in the following way. For a given
coupling matrix, the numbers of stable states with specific
Hamming distances from a particular memory state were
counted. The numbers for different Hamming distances
were then averaged over all the memories of the network.
Finally, by averaging over all realizations of the coupling
matrix, the results shown in Fig. 7 were obtained. From
a comparison with Fig. 4, it is clear that all the main re-
sults obtained from the analytic study (e.g., the existence
of two bands of fixed points for small values of k, a de-
crease in the height of the spurious band as k is in-
creased, and a merger of the retrieval band with the
spurious one for large values of k) are qualitatively repro-
duced in the simulation. The spurious band is found to
exhibit a secondary peak in the region g =0.2-0.3. As
discussed below, this is possibly an artifact of the small-
ness of sample size.

Figure 8 shows the dependence of the average number
of fixed points (for N =60) on the ‘“smallest” Hamming

25

— k=0.0

Nrp

0.5

FIG. 8. Numerical results for the dependence of N,, the
average number of fixed points, on g,,, the minimum fractional
Hamming distance from the memory states. The results shown
are for networks with N =60, a=0.1, and four different values
(0, 0.1, 0.2, and 0.3) of the asymmetry parameter k.
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distance (i.e., the least one of the Hamming distances
measured from all the memories stored in the network).
In obtaining the data shown in this figure, the smallest
Hamming distance for each fixed point was selected from
the recorded Hamming distances from all the memory
states. The number of fixed points with a particular value
of the smallest Hamming distance was then counted and
averaged over different realizations of the coupling ma-
trix. The presence of two distinct bands of fixed points
and a selective elimination of spurious fixed points by the
introduction of asymmetry are clearly seen in this figure.
An interesting feature of the data shown here is that the
band of spurious states has its peak at g=~0.2, which is
very different from the expected value, g =0.5. It is not
clear at this stage whether this feature is an-artifact of the
smallness of the size of the network. Preliminary results
obtained for larger networks (N =<500) indicate that the
peak of the spurious band does move to larger values of g
as N is increased. Our results, however, bring out the im-
portant fact that nearly all of the spurious fixed points in
networks of small size are substantially correlated with at
least one of the memory states.

IV. SUMMARY AND DISCUSSIONS

In summary, we have studied, using analytic methods
and numerical simulations, the number and properties of
the fixed points of a Hopfield model in which a random
antisymmetric part is added to the otherwise symmetric
synaptic matrix. We find that the introduction of the an-
tisymmetric component leads to an exponential decrease
in the number of spurious fixed points, whereas the re-
trieval fixed points remain mostly unaffected by the intro-
duction of asymmetry if the relative strength of the an-
tisymmetric component of the interaction matrix and the
memory loading level are small. The fixed points which
are eliminated due to the introduction of asymmetry have
relatively high values of an energy parameter defined in
terms of the symmetric part of the interaction matrix.
All the qualitative predictions and a few quantitative
ones of the analytic calculations are confirmed by the re-
sults obtained from simulations.

As mentioned in the Introduction, calculations similar
to the ones described here have been carried out by
Treves and Amit [22] for an asymmetrically diluted
Hopfield network. The main differences between the
model studied by them and the one considered here are as
follows.

(1) The symmetric component of the interaction matrix
in the model with asymmetric dilution is not identical to
the synaptic matrix of the original Hopfield model.
Therefore, the random component introduced in the
synaptic matrix by asymmetric dilution has both sym-
metric and antisymmetric parts. For this reason, it is
difficult to determine which of the changes caused by
asymmetric dilution are consequences of the presence of
an antisymmetric component in the interaction matrix.
In contrast, the symmetric part of the synaptic matrix of
the model we consider is the same as that of the original
Hopfield model. Therefore, any observed difference be-
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tween the behavior of our model and that of the Hopfield
model may unambiguously be attributed to the presence
of the antisymmetric component.

(2) In the asymmetrically diluted model, one (and only
one) of J;; and J; is zero if they are not equal. This im-
plies that the magnitudes of the symmetric and antisym-
metric components of J;; are equal if J;;7J;;. Thus, the
elements of the antisymmetric part of the interaction ma-
trix of this model are not completely independent of
those of the symmetric part. In our model, in contrast,
the elements of J® are completely independent of the cor-
responding elements of J°.

A comparison of our results with those obtained in Ref.
[22] shows that the behavior of spurious fixed points is
essentially the same in the two models—these fixed
points are exponentially suppressed by the introduction
of asymmetry. The main difference between the results
obtained for the two models lies in the behavior of the re-
trieval band. In the asymmetrically diluted model, the
width and the height of this band decrease with increas-
ing asymmetry, while both these quantities increase with
asymmetry in our model when the asymmetry parameter
k is below a critical value. Furthermore, in the model of
Ref. [22], the dilution does not cause any significant
change in the retrieval quality, whereas this is true in our
model only for low loading of the memory.

It was mentioned earlier that although we have calcu-
lated (N, ) in the analytic part of this study, the quanti-
ty that should actually be calculated is {InN fp ). A cal-
culation of the latter quantity would involve the use of re-
plicas. Such a calculation was formulated by Bray and
Moore [20,21] for the infinite-range Ising spin glass.
They found that the calculation of (InN,) reduces to
that of In{N, ) if all saddle-point parameters which are
off-diagonal in replica space are set to zero. This “diago-
nal” saddle point was found to be locally stable, which
suggests (but does not prove because local stability of this
saddle point is a necessary but not sufficient condition for
N/, to be self-averaging) that the results for {InN, ) and
In ( Ng, ) should be the same if N fp is the total number of
fixed points (metastable states). Our numerical results
[approximate equality of {InN fp ) and In{N fp ), and good
agreement between the analytic and numerical results for
F(a,k)] suggest that a similar conclusion applies to our
calculation of the total number of fixed points. We did
not attempt a stability analysis similar to that of Ref.
[20,21] because such an analysis is much more complicat-
ed for the model we consider here. We have formulated
the replica analysis for a calculation of (InN, ) for the
purely symmetric Hopfield model. The resulting saddle
point equations involve ten parameters and several mul-
tidimensional integrals. An analytic or numerical solu-
tion of these saddle point equations would be a formid-
able task. A similar calculation for the model we consid-
er here would be even more complicated. For this
reason, a calculation along these lines was not attempted.

Existing studies [6,20-22] of the number and proper-
ties of fixed points of spin-glass and neural network mod-
els, which are special cases of the model we consider
here, suggest that the quantities N, (N,a,k,€) and
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N;,(N,a,k,g) are probably not self-averaging for all
values of € and g. For this reason, a comparison between
our analytic and numerical results for these quantities
would be meaningful only at a qualitative level. The ob-
served similarity between our analytic and numerical re-
sults for these quantities suggests that most of the quali-
tative features of the actual behavior of these quantities
are rendered correctly in our (possibly approximate) ana-
lytic calculation. Since a quantitative agreement between
analytic and numerical results is not expected, we did not
attempt to carry out a detailed finite-size scaling analysis
of the numerical data for these quantities.

We close with a discussion on the implications of the
results of this study on the retrieval properties of
Hopfield-type models with random asymmetry. The ob-
servation that the introduction of moderate amounts of
random asymmetry causes an exponential reduction in
the number of spurious fixed points, but does not affect
the retrieval states seriously suggests that the presence of
such asymmetry may improve the performance of the
network as an associative memory by enlarging the basins
of attraction of the memory states. Of course, the results
obtained in Sec. II tell us that random asymmetry alone
cannot completely eliminate the spurious fixed points
without eliminating the retrieval states too. In fact, for
any value of the asymmetry parameter k, the height of
the spurious band of fixed points is larger than that of the
retrieval band. Since the number of spurious fixed points
is always exponentially large in comparison with that of
retrieval states, the fraction of randomly chosen initial
configurations which converge to retrieval states is ex-
pected to go to zero in the large-N limit for any value of
k. However, the reduction in the number of spurious
fixed points by the introduction of asymmetry may still
have some beneficial effect in networks of relatively small
size. For example, our numerical calculations show that
for a network with N =60, a=0.1, the average number
of fixed-point attractors decreases from ~300 to =20 as
k is increased from O to 0.3. It is reasonable to expect
that such a reduction in the number of spurious attrac-
tors would lead to a substantial enlargement of the basins
of attraction of the memory states in such a network.
One should, however, be cautious in making such a pre-
diction. Our results indicate that the attractors which
are eliminated by the introduction of asymmetry have rel-
atively high values of the energy parameter €. Although
any general relation between the energy and the size of
the basin of attraction of a fixed point has not yet been es-
tablished, it is generally believed [28] that fixed points
with high energies have small basins of attraction. If this
is true in general, then the fixed points which are elim-
inated by the presence of asymmetry would have small
basins of attraction and their elimination would not have
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any significant effect on the retrieval performance of the
network. It would be interesting to check whether this is
the case.

Information about the number and properties of the
fixed points of the network is, of course, not sufficient for
the development of a complete understanding of its per-
formance as an associative memory: it is also necessary
to analyze its dynamics. At the present time, many as-
pects of the dynamics of neural networks with asym-
metric interactions remain incompletely understood [29].
A question of particular interest in the present context is
how the time taken by the network to converge to a fixed
point is modified when asymmetry is introduced in the
synaptic interactions. The results reported in Ref. [15]
suggest that the presence of asymmetry greatly increases
the time of convergence to spurious attractors while leav-
ing the convergence time for retrieval states mostly
unaffected. However, no systematic investigation of the
dependence of the time of convergence on the nature of
the attractor, the memory loading level, the relative
strength of the antisymmetric part of the interactions etc.
has been reported so far. Another interesting question is
whether a network with N — o and asymmetric interac-
tions ever settles down to a fixed point attractor. Several
authors [1,7,8] have suggested that the presence of an an-
tisymmetric part in the connection matrix effectively
makes the deterministic update rule of Eq. (4) a stochas-
tic one, similar to the update rule corresponding to a
nonzero temperature. If this analogy is correct, then a
network with asymmetric interactions would never settle
down into a time-independent state. In this scenario, the
retrieval of a memory would correspond to the system
embarking on a trajectory which remains strongly corre-
lated with a memory state at all times. It is not clear
whether trajectories which remain strongly correlated
with one of the spurious fixed point attractors of the sym-
metric model would also occur in the dynamics when
asymmetry is introduced. Detailed studies of some of
these outstanding issues would be most interesting.
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APPENDIX: DERIVATION OF THE SADDLE-POINT EQUATIONS

Using an integral representation of the § function, Eq. (7) can be written as
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Let us denote the first term on the right-hand side of Eq. (A2) by X and the second term by Y. Then we have
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Using the transformation [24]
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Since ¥,;0;&¢ is O (V'N ) for an overwhelming majority of fixed points, a p and b, would be O(1 /V'N ). Therefore,

expanding the last term in the exponent in Eq. (A5) and neglecting terms of the order 1/N and higher orders, we have
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X =exp

Introducing the variables
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and the Lagrange multipliers 4 and B, respectively con-
jugate to the constraints in Egs. (A7a) and (A7b), so that,
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the integrations over a, and b, are decoupled and can be
done easily. For large N, saddle-point integration over
the variables 4 and B can be performed explicitly as the
saddle-point equations for 4 and B are algebraic. One
then finds that
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Performing averages over the Gaussian variables {J'}
and ignoring O (1/N) terms in Eq. (A2), we get

k> k> ?
72ty |24

Using the Hubbard-Stratonovich identity Eq. (A10) can
be written as

Y =exp (A10)

Y =exp 24)2

\/21r/N

X fdx exp (A11)

_ %_ +xk3é;

Thus the integrand in Eq. (A1) becomes independent of
{o;} and therefore Tr(,,) gives 2V, Performing Gaussian

integration over the variables {¢;} in Eq. (A1), we finally
get
(N, (N,a,k)) =eNF(@h) (A12)

where the quantity F(a,k) is the saddle-point value of
the function defined in Eq. (9).
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